Category Archives: Interesting

Bluetooth Low Energy (BLE) on the Raspberry Pi

Bluetooth Low Energy – BLE – Bluetooth 4.0 is an industry-standard wireless protocol built for the Internet of Things – IoT, it is designed to provide connectivity for devices operating from low capacity power sources such as coin cell batteries.

Raspberry Pi2 with ASUS USB-BT400 Bluetooth 4.0 Dongle

In this introduction to BLE I’ll be configuring a Raspberry Pi2 computer to talk to a smart watch. We will be installing the latest version of BlueZ from source, enabling BLE support. This is not a tutorial on decoding the data from the watch I am just using it as an example, although I may write about decoding it in a future posting.

I am using a ASUS USB-BT400 Bluetooth 4.0 Dongle on a Raspberry Pi2 but this will work on any computer with a Debian based distribution. Your dongle must be BLE/Bluetooth 4.0 capable otherwise this won’t work. I am using an ID107HR activity tracker with pedometer and heart rate monitor, randomly chosen from the list of cheap ones available on Amazon. While using the Pi to talk to the the watch make sure Bluetooth on the phone is off as it can only connect to one device at a time.

The current distribution of Raspbian – jessie on the Raspberry Pi comes with version 5.23 of the BlueZ Bluetooth stack that’s rather old, dating from September 2014 which lacks many of the features we will be needing. The current version 5.44 of the BlueZ has many changes in the package with many familiar components such as hcitool and gatttool being depreciated, so I will be ignoring those and using the available commands, bluetoothctl, on the terminal.

Installing BlueZ

With Raspbian – jessie installed we will need to update the Pi make sure some packages are installed and then installing the latest version of BlueZ. But first, remove the installed version 5.23 of BlueZ:

Next, perform the traditional housekeeping updates then install the build tools and USB libraries. Those parts that are installed already will be automatically skipped.

Now, download the source code, at time of writing the current stable release is version 5.44, check the BlueZ site for the latest version.

Inside the BlueZ directory, configure, make (this takes a while), and install. The experimental option adds BLE support and enabling the library allows for python use later on:

Configuring and Starting BlueZ

At this stage we will need to check that the installation worked and that we can see your bluetooth dongle. With your bluetooth dongle in a USB port you should see it on your list of USB devices, here you see mine as device ID: 0b05:17cb ASUSTek Computer, Inc.:

You will also need to enable the experimental services, edit the file /lib/systemd/system/bluetooth.service and in the [Service] section change the ExecStart line to end with –experimental:

Start the bluetooth service, and while we are at it enable it to load on boot:

Once started, check the status of the bluetooth daemon with:

Should you need to, the service can be stopped and prevented from loading on boot with:

Finally, you may want to enable auto-power on for the device, to do so create this bluetooth config file:

and add these two lines:

You should restart the Pi at this point and check that the daemon has loaded properly with sudo systemctl status bluetooth

Testing BlueZ

Start the bluetooth controller, you should see your dongles MAC address and alias:

for first time use, try scanning to find your watch, if it doesn’t appear it is out of range, its battery is flat, or your dongle does not support BLE, here you can see it as ID107 HR:

bluetoothctl remembers your devices, so when you next use the program the watch appears on the list at the start. The controller has a number of options, these can be seen with help command. You can use show to view the status of your dongle:

The list of UUID’s show the services supported by the Dongle. Now we can power the dongle on, set the agent – this manages the connection, and then connect to the watch on which the bluetooth symbol will appear. Once connected there will be a pause then you will see a list of attributes supported by the watch, it is advertising the services available:

and now that we have connected we can ask for some info:

These UUID’s are used to describe the sevices available on the device, some are pre-defined and can be found in the a href=”” target=”_blank” rel=”noopener noreferrer”>GATT schema, others are vendor specific and unless they publicly release these, decoding can become rather difficult. There are four types of attribute:

  • Services – collections of characteristics and relationships to other services that encapsulate the behavior of part of a device
  • Characteristics – attribute types that contain a single logical value
  • Descriptors – defined attributes that describe a characteristic value
  • Declarations – defined GATT profile attribute types

Each attribute is identified by a 128 bit ID, for example, one of the characteristics from the list above: 00002902-0000-1000-8000-00805f9b34fb, the first eight bits are used as an unique identifier: 00002902 and are shown as UUID’s: 0x2902. Data is contained in services, each service has a number of characteristics that may contain further descriptions depending on the requirement of the characteristic. You can see how the data is mapped out in this chart:

Service Containers

A spreadsheet with the watch data reformatted and tastefully coloured to illustrates this. Observe the Service URL column, it looks a lot like a directory structure:

Here we see two services /service0008 and /service000c looking further into the second service: /service000c we see that it has four characteristics, and to of those have descriptors. We can interrogate the characteristics and descriptors to glean further information by selecting the attribute and reading, like so:

Which is all very nice, but not particularly helpful as the manufacturer has chosen to use custom, proprietary, UUID’s for the watch. We don’t know the instructions to send to have the watch realease its data.

Those Scripting BlueZ

Inevitably, you’ll be wanting to automate connections. This becomes easy with the automation scripting language expect. Install, then make a script file:

In this example the script forgets the watch, finds the watch, connects to the watch, gets some info and then disconnects:

in the script, send sends a command, don’t forget to add the carriage return – \r and expect is used to wait for a response within the timeout period, here it is set to 10 seconds. expect -re is using regex when looking for a reply, otherwise it uses a literal string. So much more can be done with expect and there are many tutorials, such as this one written by FluidBank.

More Bluetooth Data

For analysing bluetooth data a couple of very useful tools are available, Wireshark and Android data logging. I will go through the installation but not look at the data in any detail, this posting is getting a bit long. This Section is in two parts, installing Wireshark and Android Debug Bridge.

Sniffing with the Shark
Wireshark is a network and bluetooth packet sniffer, it shows you network and bluetooth traffic occurring on your Pi. Here is a quick installation method for a reasonably new version of Wireshark (v2.2.4) from the backports, answer yes to the question “Should non-superusers be able to capture packets?”:

and if you get a message about permissions, reconfigure the package and answer yes:

Start Wireshark and double click your bluetooth device on the list, in my case bluetooth0. There is not much to see as Wireshark will only see traffic between the watch and the Pi:

Wireshark Data Capture

Android Debug Bridge – ADB
For Anroid 4.2.2 and above, activate developer mode on the phone, go to Settings, tap About Phone and at the bottom of the list tap Build Number three times. Back in the main settings page Developer Options has appeared, tap developer and turn USB debugging On. With the phone plugged into a USB port a little Android head should appear in the information bar at the top-left of the screen. To begin we will need to install some udev rules written by Nicolas Bernaerts:

Install the android tools, confirm that you have at least version 1.0.31, and start ADB

At this point on the phone an allow USB debugging dialog will appear, give permission and always trust to authorise it. ADB will now show the device as a device:

If the device list is empty, with everything plugged in good and proper and the phone setup in developer mode, start your diagnosis by checking udev; open another terminal window and view logging with udevadm monitor –environment and reload with sudo udevadm control –reload I’m not entirely sure what I did to get it from ‘not working’ to ‘working’. If all else fails elevate yourself to root.

Data Capture
With ADB now setup we can capture the Bluetooth data being exchanged. With bluetooth off, in the Developer Settings find Enable Bluetooth HCI snoop log and turn it On. In the smartwatch app synchronise with your watch, once complete turn Bluetooth off manually – this is to minimise the amount of captured data. Don’t forget to turn logging off on the phone when done. To find where the log file has been stored and copy the file from the phone to the Pi use:

We can now use Wireshark to read the log file…

Wireshark reading the Android Bluetooth Log

This wasn’t quite the posting I originally had in mind, I wanted to decode the data from the watch for my own use, making something more useful, impressive graphs and charts, than that provided by the Android App VeryFit 2.0 but as the manufacturer has chosen to use proprietary GATT codes it makes the job that much harder. It may be much simpler to just buy an expensive FitBit and download the data from them. But with writing this I now know a few things that were previously unknown, and I hope that this has provided some light to your BlueZ (a pun!, right at the end!).

Links and Sources

Controlling the Zoom H2n Audio Recorder with Arduino

In Part One I covered the byte codes sent by the Zoom Remote Controller RC1 and decoded data sent over the wire to the remote from the Zoom H2n Recorder.

In this post I will be covering the use of an Arduino style micro-controller to decode the signals sent by the remote, then control the recorder. I have used a Tennsy 3.1 Arduino clone as this is a small controller with two additional hardware serial ports, works with 3.3volt logic, and a with the addition of a crystal and button battery a real-time clock.

Arduino control of the Zoom H2n

Setup and Connections

The connections on the remotes four pin 2.5mm jack, with pin one being the tip:

  1. Remote Receive – RX
  2. Remote Transmit – TX
  3. Ground
  4. 3.1V – Power

On the Teensy there are two hardware serial UARTs available in addition to that used by the USB port, UART2: Pin 9 (RX2), Pin 10 (TX2) and UART3: Pin 7 (RX3), Pin 8 (TX3). Serial data is sent at 2400 baud, 8 bits, no parity, 1 stop (8n1). The response data shown is for when the recorder is in XY Stereo mode (0x20, 0x21), different codes are returned when other recording modes are used, see the end of Part One for details.

Serial Monitor

This first chunk of code is for monitoring the outputs of the remote control and recorder. Connect Remote Receive – RX on the remote to RX2 – Pin 9 on the Teensy and Remote Transmit – TX to RX3 – Pin 7 and Ground to Ground on the Teensy. This program will output data received to the Arduino IDE’s serial monitor.

The output is in four columns; the UART seeing activity, current milliseconds and the received data in hexadecimal and decimal values.

Taking Control – But Not Listening

Sending the command to the recorder blindly is quite straight forward, just send the bytes to the Remote Transmit – TX pin on the recorder (Zoom RX). This can be seen in the following, when run it starts the recorder recording for ten seconds. Connect: Remote TX to TX2 on the Teensy, Remote RX to RX2 and Ground to Ground.

Taking Control – And Listening for a Reply

The next stage is to have the Teensy control the Zoom and listen for a response from the recorder. Again, as before connect: Remote TX to TX2 on the Teensy, Remote RX to RX2 and Ground to Ground. For the demonstration I have added three buttons to act as the controller.

Zoom Control with three buttons

The following code needs more development work, I ran out of time, but I think gives a good starting point for further investigation. I have placed the commands for the remote in a structure, each command; record, pause and mark has four components, the command to transmit to the Zoom, the expected responses when starting and stopping and a flag to store the status.

There is a problem when resuming from pause, because the Zoom sends codes to flash the LED on the remote this can pick up the wrong pair of bytes; such as 0x21 0x21 instead of the expected 0x20 0x21.

I expect to be revisiting this, adding a timer function plus external battery for long running. I’m not sure how useful listening for a response is, sending the record command toggle on its own seems fairly robust without the need to check.

Links and Sources

Hacking the Zoom H2n Remote Control

The Zoom H2n is a portable sound recorder looking like an old fashioned microphone it is a handheld device that provides an assortment of stereo and surround recording modes, it records onto an SD card in MP3 or WAV format with options for various bitrates and frequencies. The unit is powered internally by two AA batteries and can also be powered from the USB port. The recorder I am experimenting on has firmware version 2.00 installed.

A not at all contrived image of the Zoom H2n Portable Recorder

The Zoom Remote Controller RC2 is a wired four pin 2.5mm jack plug connection, this remote has three buttons: record, mark, and pause there is also an LED to show when the H2n is recording. It is purchased separately from the recorder and only appears to be available bundled in an accessory pack. It looks difficult to take apart without leaving some damage, and this may not be necessary for decoding.

Zoom Remote and breadboard for testing

In this post I am looking to see how the remote works and find what control method it employs so in Part Two I can use an Arduino style micro-controller to provide an external trigger such as for timed recordings.

Setup for Testing

For testing I have made a breakout lead, this is essentially an extension cable split in half with a couple of molex style connectors allowing me to plug it into a breadboard. With this I have found the cable has the following connections, with pin one being the tip of the 2.5mm jack plug:

  1. Remote Receive – RX
  2. Remote Transmit – TX
  3. Ground
  4. 3.1V – Power

When checking with a multimeter I found continuity from the negative of the left battery (on the Mic Gain side) to pin three, ground, of the jack, there is also a connection between the positive of the right-hand battery to pin one of the jack but on the multimeter in diode mode there looks to be a capacitor, the voltage rises until no apparent connection is indicated. With no activity on the recorder the RX and TX pins show ~2.7 volts.

Determining the RX and TX pins turned out to be straightforward. When you press the record button after a moment the recording LED lights up, on the oscilloscope I can see three different square wave patterns for the three different buttons on the TX pin and a single type of square wave on RX to light the LED. The following images show the signal for the record button then that sent in response to to light the LED.

Signal sent by the remote when Record pressed
Signal sent by the Zoom recorder to light the LED in the remote

Also when buttons are pressed on the recorder data is seen on the RX line. For a more detailed examination I will need to break out the logic analyser.

Signal Analysis

Following some research where the remote for a Zoom H4n was examined, I set both channels being used on the logic analyser to the following:

  • Protocol: UART
  • 2400 baud, 8 bits, no parity, 1 stop (8n1)
  • Bit Order: LSB first, inverted logic: No
Decoding of the first part of the stop recording command

First I decoded the buttons on the remote with the trigger on the logic analyser set to falling edge on the Remote TX line. On TX there is a pause between the two pairs of command bytes which appears to be the length of time the button was pressed, around 350-500ms, there is also a pause between bytes in the RX response, the value of the response changes depending on which recording mode you are in, those shown below are when the recorder is in XY Stereo:

Record Start
TX: 0x81 0x0 ~ 0x80 0x0
RX: 0x20 1.85s 0x20 0x21 record LED on
Record Stop
TX: 0x81 0x0 ~ 0x80 0x0
RX: 0x21 0x21 0x20 1.9s 0x20 0x20 record LED off
Pause (while recording)
TX: 0x80 0x2 ~ 0x80 0x0
RX: 0x21 51ms 0x21 0x20 then this repeats
492ms 0x20 0x21 to flash the LED
492ms 0x21 0x20 until pause is pressed again
Resume from Pause
TX: 0x80 0x2 ~ 0x80 0x0
RX: 0x21 0x21 LED on
TX: 0x80 0x1 ~ 0x80 0x0
RX: 0x21 492ms 0x20 0x21 LED on

I was also able to capture the following activity sent to the remote when various buttons were pressed on the recorder itself with the recorder in XY Stereo mode. Other models of the recorders made by Zoom have more advanced remotes, such as the RC4 as featured in this hack of the H4n. I suspect they would work on this machine too. This time I set the logic analyser to trigger with a falling edge on Remote RX. I think the 0x20 code is used to indicate the display illumination has been turned off. I saw activity on all buttons except the Mic Gain knob.

Power On – Without remote attached
TX: Lots of random activity
RX: 0x10 400ms 0x80 0x81
1.2s 0x10 0x0 0x80 0x0
140ms 0x0 0x0 0x80 0x80 0x0
~2ms 0x0 0x80 0x0 0x0 0x80 0x0
Power On – With remote attached
TX: 0x0 five pulses 30ms apart
30ms 0x0 0xA1 0x80 0x0 0xA1
RX: following pulses on TX 0x80 0x81 0x80 0x10
1.2s 0x10 0x0
148ms 0x0 0x0
~4ms 0x0 0x0 0x0
Record Start
RX: 0x20 20ms 0x20 0x21 LED on
Record Stop
RX: 0x21 0x21 0x21 0x20 ~ 0x20
~283ms 0x20 0x20  LED off
Menu \ Home – Into Menu
RX: 0x20 0x20 0x0
Exit from Menu
RX: 0x20 45ms 0x20
Play Switch: Up/Down/Press
RX: 0x20 55ms 0x20
Clipping detect (tapping the microphone with a pen)
RX: 0x10 0x2 56ms 0x2
59ms 0x10
60ms 0x10
354ms 0x10
Volume: Up and Down
RX: 0x20
Recording Mode Change: 4 channel surround
RX: 0x10 0x10 0x30 14ms 0x30 0x30
122ms 0x34
60ms 0x30
60ms 0x30
Recording Mode Change: XY Stereo
RX: 0x30 0x30 0x20 216ms 0x20
Recording Mode Change: 2 channel surround
RX: 0x20 0x20 0x30 0x30 18ms 0x30
148ms 0x30
164ms 0x30 0x6
56ms 0x14 0x30
477ms 0x30
Recording Mode Change: MS Stereo
RX: 0x30 0x30 0x10 170ms 0x10
50ms 0x12

I think these response codes are to light up various LED’s on the more advanced Zoom RC4 remote, this suggests that other remotes would work in this recorder.

The following table shows the response codes given with different microphone configurations when record is clicked to start recording:

TX: 0x81 0x0 ~100ms delay 0x80 0x0
XY Stereo: 0x20 750ms delay 0x20 0x21
2 Channel Surround: 0x30 750ms delay 0x30 0x31
MS Stereo: 0x10 750ms delay 0x10 0x11
4 Channel Surround: 0x30 750ms delay 0x30 0x31

In Part Two I will be covering the use of a Arduino style micro-controller as an alternative remote control.

Links and Sources

More than one MCP23017?

I have a had a few requests on how to add more than one MCP23017 port expander to the Arduino via the i2c bus, this chip is a very useful and easy to use component that adds up to 16 digital I/O ports to the Arduino. This demonstration uses two MCP23017’s with three LEDs for output, one RGB LED to loop through a selection of colours, a single colour that blinks on and off, and another RGB LED that is controlled by a four button keypad. I have written the program using the millis() timer rather than the delay() function to maintain the illusion of multi-tasking.

Two MCP23017s and a Teensy
Two MCP23017s and a Teensy

Addressing the MCP23017

The port expander has a three pins, A0, A1, and A2 for which an address can be set, each MCP23017 on your i2c bus must be set to have its own address, this is a three bit address and up to eight expanders can be used. Although I suspect things may noticeably slow down as you add more expansion. There is an SPI version available, the MCP23S07, that may be better for use with larger setups.

MCP23017 pinout

The address connections are shown the chart below, where zero is a connection to ground and one is a connection to 5V (or 3.3 volts). The MCP Address column refers to the address used by the Adafruit driver as you will see later.

hardwired address i2c
A2 A1 A0
000 GND GND GND 0x20 0
001 GND GND 5v 0x21 1
010 GND 5v GND 0x22 2
011 GND 5v 5v 0x23 3
100 5v GND GND 0x24 4
101 5v GND 5v 0x25 5
110 5v 5v GND 0x26 6
111 5v 5v 5v 0x27 7

In my circuit I have assigned the first expander address 0x20 and the second 0x21.

Powering the Expanders

The port expander has been designed to run on a supply of 2.5v to 5.5v, so using a 5v supply from the USB port should be OK for a modest number of LED’s, you will need to calculate what your power requirements will be, approx 20mA per LED, so in this demonstration: 7 LED’s x 20mA = 140mA, plus whatever the chip itself is using. Bear in mind that each GPIO pin on the expander can only handle a maximum of current 25mA, and that the maximum total power dissipated must not exceed 700mW (after which point it’ll let the magic smoke out).

A Teensy 3.2 has a 3.3V supply but this is rated at 250mA maximum, the Ardunio UNO looks to be around 450mA on the 5V and only 50mA on the 3.3V output. For running from a battery I would look to use a 6v supply and a buck converter such as this Pololu step-down regulator.

The Hardware

On the left we see the Arduino UNO with the two i2c wires coming from pins A4 – SDA and A5 – SCL, two 4.7K ohm resistors are used for pullup, the port expanders are daisy chained along this bus, using pins 12 – SCL and 13 – SDA. See how the addresses are set on pins 15, 16 and 17, and note the 1K ohm resistor on the reset pin (18), without this resistor the circuit will work for a while then stop. The GPIO pins are connected as appropriate and the button switches do not need pull-up resistors as the port expanders internal pull-ups are turned on in the software.

Connecting two MCP23017 port expanders
Connecting two MCP23017 port expanders (click to enlarge)

Also if you are using RGB LED’s you will want to adjust the values I have given here, different colours have different power requirements so different resistor values are required to get a properly balanced colour LED. The RGB LEDs I have used are common anode, 5v is applied to the common and the path to ground to through the expander, this inverts the logic so setting the pin HIGH turns the LED off, and LOW turns it on.

The Software

The Adafruit MCP23017 library assigns each GPIO pin a number as you can see in the following diagram:

MCP23017 pin assignments

On both expanders the RGB LEDs are on ports 8,9 and 10 (to save me writing separate code for each RGB LED), the blink LED on port 7 of the first expander, and the buttons occupy ports 4, 5, 6, and 7 of the second. The first three buttons are used to toggle the red, green and blue in the second RGB LED while the fourth turns them all off. The other two LEDs are just doing things to show that they can do stuff.


Captive Nut How-To

A quick captive nut how-to, for when you are making a wooden box that has a lid you need to remove on an irregular basis. Wood screws tend to maul the wood after a while and then the lid falls off, these captive nuts are easy to do and just work.

You will need:

  • Nut and bolt
  • two part expoy adhesive
  • drill bit as large as the nut and a drill
  • Vaseline or any other petroleum jelly
parts needed
parts needed

In this example I am using an M4 nut and bolt and an 8mm drill bit. You may need to cut your bolt to length.

1. Drill your hole
in this case about 1 cm, deep enough so when you insert the nut and bolt the expoy will cover the nut. Clean it up, removing wood shavings and other debris.

Hole Drilled
Hole Drilled

2. Grease Up
To prevent the expoy sicking to the bolt smear some Vaseline onto your bolt, only a small amount is required, but you should get it into the thread, make sure you keep the nut clean. Thread the nut back onto the bolt, leaving 4-5mm of bolt protruding, as shown:

grease your bolt
grease your bolt

3. Mix up the Expoy
Mix a blob about the size of a marrowfat pea, enough to fill half of the hole. Drizzle this into the hole.

drizzle the expoy
drizzle the expoy

4. Plunge the nut and bolt into the hole
Wiggle it about a bit to make sure the expoy is well distributed. Position the bolt how you would like and leave to set. If you see the bolt moving use some sticky tape to hold it in place.

plunged bolt
plunged bolt

5. Remove the bolt
After about 10 to 15 minutes, the expoy will have set (unless you got that weird stuff). Use a screwdriver for at least the first turn as there will be a little adhesion, but it’ll come out cleanly.

If you have any excess expoy protruding it’s still quite soft at this time so cut it way with a Stanley knife as I have done in the example. Once fully cured expoy makes a hard plastic that can be difficult to cut.

the nut is captured
the nut is captured

The amount to cut off your bolt is the length of your bolt less the thickness of your lid less a bit of wiggle room, I use a cutting disc on a Dremel, and file the cut edge smooth. You need to ensure its long enough to go through the nut once cut as the expoy has a thread that gives a misleading nutness (technical term!) that soon wears away.

I hope you enjoy your captive nuts, I am sure they will give you many years of service. The same principle can also be applied to making captive bolts, especially if you wanted to use Wing Nuts for easier access.

Multiple buttons on one pin with an Arduino

Here is a circuit that allows you to use five buttons; up, down, left, right and select, on one analogue pin with the Arduino. It is a adaptation of one used on this LCD shield manufactured by DF Robot. I have used a 10K pull-up resistor and added a 100nF capacitor to help with debounce. The downside is that this can only detect one button press at a time, the button with the lowest resistor value is returned, and the output varies when different voltages are used to power it requiring an update to your software.

In this post I am looking to explore the effect of the existing resistor values, and how to choose your own resistors. This kind of circuit is called a multiple voltage divider or voltage ladder where each rung of the ladder, the switches in the diagram above, produces a different output voltage. Pressing one of the buttons on our circuit changes the output to the analogue port from 5V to a lower one determined by the number of resistors (R1 to R4) in series before the button, as you go down the ladder the output voltage to the pin increases. Here is a short sketch I used to test the circuit and show the voltage reading for each button:

The results from this are shown in the chart below, for the power I used the regulated 5V and 3.3V outputs on the Ardunio Uno, if you run this set-up yourself you may notice an anomalous reading when you release the button, more about this later. Note that a button press drops the power down to the recorded value, the pin is normally high (5V/3.3V) through the 10K resistor.

Resistance1 at 5v at 3v3
Btn Value Meter reading2 volt reading2 volt
S1 none 0 0V 0 0V
S2 330Ω 334Ω 31 0.15V 19 0.10V
S3 950Ω 964Ω 88 0.43V 57 0.29V
S4 1950Ω 1948Ω 166 0.81V 108 0.53V
S5 5250Ω 5270Ω 352 1.72V 230 1.14V
1: Total value of the resistors in series at the button. 2: this is an average, the actual reading can vary.

There are two columns for the resistance, the value marked on the resistors and the multimeter reading. It is best to use 1% tolerance resistors for this circuit to reduce the chances of the readings drifting close to the next. A good spread of output voltages ensures accurate switching.

All this works very well, but what to do if you wish to add more buttons, or have different output voltages? Looking at the circuit, each button can be seen as a voltage divider, such as shown in the diagram on the left. Where R1 is the 10K pull-up resistor and R2 is the sum of the resistors for the button being pressed.

With this simplified model we can calculate any missing value, but for now there are a couple of things to do; calculate the output voltage for the given input voltage and resistance and more usefully for us, work out a value for R2 to give us the desired output voltage.

Calculating the Output Voltage

Using Switch 2 in our existing circuit for example, with 5 volt power:

    \[ Vout = Vin \times \frac{R_2}{R_1 + R_2} \hspace{15 mm}with\ numbers:\hspace{4 mm} 5 \times \frac{330}{10,000 + 330} = 0.16V \]

And again with Switch 4. This has three resistors in series so the value for R2 in the voltage divider is: 330R + 620R + 1K = 1950 ohm:

    \[5 \times \frac{1,950}{10,000 + 1,950} = 0.82V \]

its rather satisfying when your calculations closely agree with the real world readings.

Setting the output Voltage

So, lets try working out some resistors based on the following specification: powered at 5V with five buttons, each 0.20V apart; S1: 0V, S2: 0.20V, S3: 0.40V etc. We know the input voltage, output voltage, and resistor R1, but not R2, here is the formula for finding the resistance of R2:

    \[ R_2 = Vout \times \frac{R_1}{Vin - Vout} \]

    \[ S2: 0.20 \times \frac{10,000}{5 - 0.20} = 417\X\Omega \hspace{5 mm} S3: 0.40 \times \frac{10,000}{5 - 0.40} = 870\X\Omega \hspace{5 mm} S4: 0.60 \times \frac{10,000}{5 - 0.60} = 1364\X\Omega \hspace{5 mm} S5: 0.80 \times \frac{10,000}{5 - 0.80} = 1905\X\Omega\]

These values show the resistance required for each switch and to find the resistor the previous resistance value needs to be deducted. As these values probably won’t be in the E24 Standard Value range and won’t be available in the shops I have the nearest available value in the Standard Resistor column:

Btn Resistance Resistor Standard
S1 none
S2 417Ω 417Ω R1: 390Ω
S3 870Ω 453Ω R2: 430Ω
S4 1364Ω 494Ω R3: 560Ω1
S5 1905Ω 541Ω R4: 560Ω
1: actually the nearest is 510Ω, but 560Ω was the closest I had

Obviously, we will need to get this onto breadboard for testing.

Using the same sketch as before I re-ran the tests with the new resistor values, the results are shown below; I have also included an Expected column to show the calculated voltage using the method shown earlier.

at 5v at 3v3
btn Resistor Resistance expected reading volt expected reading volt
S1 none 0 0V 0 0V
S2 R1 390Ω 390Ω 0.19V 39 0.19V 0.12V 25 0.12V
S3 R2 430Ω 820Ω 0.38V 76 0.37V 0.25V 50 0.25V
S4 R3 560Ω 1380Ω 0.61V 122 0.60V 0.40V 81 0.40V
S5 R4 560Ω 1940Ω 0.81V 165 0.81V 0.53V 108 0.53V

That, to me, looks close enough to the 0.20V separation at 5V specified to provide some stable hardware. Here is a short sketch to demonstrate the use of analogue buttons, it returns a number corresponding to the button pressed. When you release a button its resistance changes momentarily to give the Arduino a false reading, to fix this I have added de-bounce functionality to this program:

With this substitution on R3, changing the desired 510 ohm resistor for a 560 ohm, It may be interesting to see what kind of tolerance range we may be able to use. So, for the 0.60V output the optimal resistor would be 494 ohm but we only have Standard Resistor values available and to find the resistance value for our calculation to find the output voltage we need to add 820 ohm (R1 + R2) to R3:

Resistor Resistance Volts
430Ω 1250Ω 0.5556V
470Ω 1290Ω 0.5713V
510Ω 1330Ω 0.5869V
560Ω 1380Ω 0.6063V
620Ω 14400Ω 0.6294V

Clearly, using four decimal places shows is that a 510 ohm resistor is rounded up to 0.60V, while the 560 ohm rounds up to 0.61V, so for our purposes both are suitable. The other resistors will be outside the specification.

Finding the Power Consumption

We also need to look at how much power our circuit is consuming, this is for two reasons: to ensure that our resistors are properly rated and that the power supply can supply enough power. The Ardunio Uno provides a regulated supply of 20mA at 5V and 50mA at 3.3V. The calculation is done with Ohms law:

    \[ I = \frac{V}{R} \]

So, in the original circuit the shortest path to ground is through Switch 1 and the 10K resistor:

    \[\frac{5}{10,000} = 0.0005A \times 1000 = 0.5mA \]

a very low current, this is the maximum the circuit can use. Optionally, to work out the power use for another button add up all the resistors before the switch, for example in the original circuit Switch 5 comes to: 15250 ohm

    \[\frac{5}{15,250} = 0.00034A \times 1000 = 0.34mA \]

Voltage Divider Calculations

Just to round things off, here are four formulae for finding any resistor and voltage in the divider circuit:

    \[find\ resistor\ value: R_1 = \frac{Vin \times R_2}{Vout}-R_2 \hspace{20 mm} R_2 = Vout \times \frac{R_1}{Vin - Vout}\]

    \[find\ the\ voltage: Vin = \frac{Vout \times (R_1 + R_2)}{R_2} \hspace{20 mm} Vout = Vin \times \frac{R_2}{R_1 + R_2}\]

Links and Sources

Solenoids on the Arduino with MOSFET power

I am needing to control a solenoid from the Arduino to do some high speed water splash photography. The Solenoid works at 12v and draws up to 2.5w when open, obviously a direct connection to the Arduino is out of the question. Looking in my parts bucket I found an FQP30N06L MOSFET and recalled that I’d used these to control a small motor.

The FQP30N06L MOSFET in a TO-220 package,
the heatsink tab is connected to the Drain

The FQP30N06L is a N-Channel MOSFET and can switch up to 60V DC at 32A, this is more than chunky enough for the solenoid. For use with the Arduino it needs to have ‘logic-level’ switching of 5V, looking at the datasheet for the Static Drain-Source On-Resistance – RDS(on) we can see a test condition where VGS=5V (or 4.5V) exists then we know the MOSFET is suitable.

Looking for logic-level volts in the On Characteristics (source: FQP30N06L datasheet)

The Circuit:

  • D1: 1N4002 Diode – provides surge suppression from the solenoid, this protects the MOSFET from inductive voltage ‘kickback’.
  • L1: the Solenoid or motor (a solenoid is just a linear motor)
  • Q1: FQP30N06L MOSFET being used as a switch
  • R1: 220R Resistor – current limiting, see below.
  • R2: 100K Resistor – this keeps the Gate closed when the Arduino output is off/LOW

The resistor R1 is there to protect the Arduino. On a MOSFET when a voltage is first applied to the Gate it can appear as a short to ground, limiting the current will prevent a surge that may cause damage. The Arduino supplies 5V at 40mA on a digital I/O pin.

A MOSFET switches when there is a charge at the Gate, the higher the charge the wider the gate opens and more current can flow through the Source to the Drain. Looking on the datasheet for our MOSFET the Gate Threshold Voltage VGS(th) shows a minimum of 1V and a maximum of 2.5V, this means that below 1V the gate is closed, at 1V the gate is ajar, as the voltage increases the gate opens wider until you reach 2.5V where it is fully open, power can go above this but the gate will not open any further. Going above 20V on the gate VGS will break the MOSFET.

So we need a resistor low enough to fully open the gates, but high enough to prevent the Arduino spluttering. So I chose to limit the current to 20mA and calculated the resistor with Ohms Law:
R = V / I
5V / 20mA = 250R (I used a 220R as that’s the nearest I had, this limits the current to 23mA)

Ground on the Ardunio is shared with the 12V power supply for the solenoid.


Connect the circuit to your Arduino, the MOFSET’s gate to a digital output and ground. You may want to avoid digital pins 0 and 1 as these are on the serial port and can cause the solenoid to rattle unexpectedly.

Here is the Solenoid equivalent of blink, with the solenoid circuit connected to digital pin 3 it is switched on and off once a second:

Comedy effect can be had by reducing the timings to milliseconds, although keeping that up for too long will probably knacker the solenoid.

Solenoid Control

References and Links:

Rotary Encoders in Colour on the i2c Bus

This is a follow-up to my previous writings on the subject of rotary encoders: Rotary Encoders on the i2c Bus. This time I am using the Sparkfun Rotary Encoder – Illuminated (RGB) (Part: COM-10982), this has the same rotary goodness as the SparkFun 12-step rotary encoder but with the addition of three LED’s to provide a whole host of colours on the rotating shaft.

Test Setup

Again I will be using the MCP23017 port expander to add 16 digital I/O ports to the Arduino via the i2c bus,  the rotary encoder part operates in the same manner as before and we can use the internal pull-up resistors to reduce the number of components. The LED’s operate with a common anode and the push button also operates on 5v rather than the usual switching to ground.

For my test setup I have connected the rotary encoder to GPA0 and GPA1, the push button to GPA2 and the Red, Green and Blue LED’s to GPA5, GPA4 and GPA3. Note the 10K pull-down resistor on the push button.

My program on the Arduino changes the colours as you rotate the shaft, you will see seven colours, to see more you would need to use PWM to control the LED’s brightness. With the common anode on the LED’s the logic for switching them is inverted, so HIGH = off, LOW = on. You will need the Adafruit MCP23017 Arduino Library.


Arduino Laser CNC Engraving Machine

Warning: This project uses a laser. It will hurt you if you are not careful. Please take care when handling the laser. Do not look at the beam, do not point it at yourself or anyone else. Remember that an IR Laser can damage the eye just as easily as a visible light one. A good pair of laser goggles must be worn, they must be designed to filter the colour of laser you are using and compliant to  EN207 standards.

Laser CNC

I have built a Laser CNC machine out of a couple of old DVD-RW drives, an Arduino UNO with Grbl v0.8 installed, two EasyDriver Stepper Motor Controllers and bits of wood I have around the home. The laser came from one of the DVD-RW drives.

My Engraver is vaguely based upon the Pocket Laser Engraver by Groover, except I have used an Arduino UNO and have added limit switches. G-Code is a industry standard, of sorts, used to control CNC (Computer Numerical Control) Machines, such as lathes, routers, and in this case Laser Engravers.

Here I will be providing additional information about the electronics and Grbl configuration I discovered while building the Laser CNC. I have used the following software:


Stepper Motor Controller

There are four electronic parts to this setup. The 5v power supply, a relay circuit to control the laser driver, the Laser Driver to control power to the laser, and the limit switch circuit used by Grbl to provide a stop indication on the axes.

The Power supply is a nothing glamorous, its a basic 7805 design giving a 5v output.
5v Power Supply
I use a 2A Switched Mode Power Supply plugged into the mains, similar to this 17W Switched Mode AC/DC Multi Voltage Power Supply from Maplins. Using 7.5v as the input is enough to keep the 7805 running without it having to convert too many volts into heat.

To control the laser from the Arduino, I have added a relay circuit. The 5v relay is powered by the power supply above, on one side of the normally open switches is a 5v fan to blow the smoke away, and on the other the Laser Driver, remember to switch the laser driver circuit rather than the laser diode.
relay circuit

The Laser driver using a LM317 Adjustable Regulator is a little more involved, as calculations have to be made to establish the output current. You want enough power to scorch or cut card, but not so much as to burn the laser diode out.
Laser Driver

The power output of the Laser Driver is set by the resistors R1 and R2. This video tutorial gives some explanation. Going above 500mA with a red laser will definitely cause it to blow, I have limited the power to 330mA as I only have a limited supply of lasers. I used this page for calculating resistors in parallel. Here are some milliamp output values using a couple of standard resistors.

Resistors volts / ohm mA
2 x 10R 1.25v / 5R 250mA
2 x 9R1 1.25v / 4R5 270mA
2 x 8R2 1.25v / 4R1 300mA
2 x 7R5 1.25v / 3R7 330mA

The final circuit is for the limit switches, and is based upon one found here:
limit switches
The switches need to be very sensitive, I found using that the motors were not strong enough to push button switches. I used those found in the one of the drives, and a couple from an old cassette deck. Check that you have connected up the switches correctly, X to X, Y to Y, confusion arises when they are the wrong way round and Grbl doesn’t say which switch has made contact.

In Grbl set $16=0 (hard limits, bool) if your image is larger than the allowed size then will just make your drawing look wrong, setting it to 1 (true) will cause the G-Code program to be aborted. $17=1 (homing cycle, bool) will cause Grbl to expect an $H (home) command when started, $H will cause your axes to move to their start positions.



Software Configuration

The only real issue with setting up Grbl, was getting the X and Y axes operating in the expected direction. There are two problems, getting the right start point, and having them go in the correct direction. You will be wanting the image in Inkscape to appear correctly. There are two settings within grbl v0.8 that need to be configured so that it works: $6 (step port invert mask) and $18 (homing dir invert mask). Having spent a while trying out various settings, I wrote a little mask calculator to assist me with this, to find your mask, click the checkboxes, or you can enter the current mask number and click set to find the binary code.

Invert Bit: $6=0

The documentation says that the first two bits are not used for inversion, but have found that there is a change in the direction of the motors.

Test with your favorite terminal program, on this Linux box I used: minicom -b 9600 -D /dev/ttyAMA0, turn local echo on with Ctrl-A E. Make the table go forward 1cm with X10, or in reverse X-10, Same for the Y axis, Y10, Y-10 further experimentation may be needed when you first start etching, I had a images and text appearing mirrored at first.

Now it is a case of loading your line-art into Inkscape, thin lines work best, creating the G-Code file using the laserengraver option in the extensions menu. Then sending the file to the Arduino with the Universal G-Code Sender. A Guide

My Grbl settings: